

DONGYANG WANG

Personal Website: dongyangwang.com
Phone: 210-457-9127
Email: s1382037@monmouth.edu

Address: 496 Tennent Rd,
Manalapan, NJ 07726

EDUCATION

Monmouth University , West Long Branch, NJ	<i>2024 – 2026 (Expected)</i>
• M.S. in Computer Science, GPA: 3.94	
Rensselaer Polytechnic Institute , Troy, NY	<i>2012 – 2014</i>
• M.S. in Financial Engineering and Risk Analytics, Quantitative Finance Track, GPA: 3.75	
East China University of Science and Technology , Shanghai, China	<i>2008 – 2012</i>
• B.S. in Finance, GPA: 3.5	
• B.S. in Law, GPA: 3.5	

RESEARCH INTERESTS

- Machine Learning, Transformer-based Models, Medical & Financial AI, LLM, Quantum Machine Learning, CV

RESEARCH EXPERIENCE

Monmouth University , West Long Branch, NJ	<i>2024 – Present</i>
Research Assistant	
• Designed and implemented Time-Aware Transformer models, including both classification and regression-based time to event forecasting on large-scale ventilator datasets.	
• Evaluated Quantum Machine Learning (QML) architectures and compared their performance to GPU-based models in terms of computational efficiency, predictive accuracy, and power usage.	
• Developed multimodal weighted ensemble learning frameworks to model athlete injury risk and readiness score.	

PUBLICATION

- Qu, W., Zheng, L., **Wang, D.**, Wang, J., & Pan, H. (2025). Time-Aware Transformer-based Prediction Model for AECOPD. *Studies in health technology and informatics*, 329, 1089-1093.

WORK IN PROGRESS

- Qu, W., **Wang, D.**, Zheng, L., Alvarez, F. E., Polasa, S., and Wang, J. Multimodal Injury Risk and Performance Prediction in Tennis using Weighted Ensemble Learning. Revise and Resubmit at *Communications of the ACM*.

COURSE PROJECTS

Deep Neural Networks for Hospital Length-of-Stay (LOS) Prediction

- Developed and tuned a deep neural network using Keras Tuner to optimize architecture and hyperparameters.

Sports Injury Sentinel LLM (PEFT + DPO Medical Chatbot)

- Created a domain-specific sports-injury medical dataset and implemented LLM-as-Judge evaluations.
- Fine-tuned the Qwen-3 model using PEFT method (LoRA/QLoRA) and applied Direct Preference Optimization (DPO) to improve preference-aligned responses.

LLM based Company Shareholder Letter Sentiment Analysis

- Applied zero and few-shot with Qwen-3 to extract strategic themes and sentiment trends from shareholder letters.

Precision Agriculture Image Classification (CNN + Transfer Learning)

- Built multiple image-classification models (CNN, and VGG16 transfer learning) to identify different plant species.

TECHNICAL SKILLS

Programming: Python, Java, C++, MATLAB, R, SQL, MongoDB